= Lightning Talk on Exceptions
= MiltonKeynes.pm 12-Jan-2009

= Peter Edwards
peter@dragonstaff.co.uk

= Slides at http://perl.dragonstaff.co.uk

mailto:peter@dragonstaff.co.uk
http://perl.dragonstaff.co.uk/

What Are Exceptions

= Defensive programming

= expected behaviour
= you should anticipate bugs or incorrect input

= recovery from
or reporting of
"exceptions” to expected behaviour

Exception Handling

= detect

= check data and die/throw exception when invalid

= wrap calls in eval:
eval { $foo->bah() };
die "foo failed: $@" if $@;

= classify

= user error
program error

= severity level (debug, info, warn, error, fatal)

Exception Handling

= report
= warn to STDERR and continue

= die with message to STDOUT
= print to screen

= logging with log4perl - severity level

Exception Methods

= Return codes
= don't do this!
= is it 0 or 1 or a special value that is failure?
= system calls vary

= easy to forget to check return code in caller leading
to hidden error

= difficult to return code and message

= sub a { return (1, "Invalid file format, file path: $fpath"); }
= my $rc = a(); # oops, only gets message not code

Exception Methods

= hierarchy of die/rethrow inside eval

= sub a{
die "oops"; # should be a croak() for context
return 1;

}
sub b {

my $rc;

eval { $rc = a() }; # undef

die "a() failed: $@" if $@; # rethrow
return $rc;

}

eval { print "b returns " . b() };
print "b() failed: $@" if $@;
>>> b() failed: a() failed: oops at t.pl line 2.

Better Exceptions

= eval/die/rethrow is a bit clunky
= built-in error object methods would be nice

= languages like java or javascript give you
try... catch... throw

= so use a CPAN exception module... which one?

Modules available

= Fatal - makes failed builtins throw exceptions
= use Fatal gw(open close);

= Error

= gives you try... catch... throw
= obscure nested closure memory leak

Modules available

= Class::Throwable
= lightweight
= easy to use

controllable levels of verbosity

extensible exception objects
| use this one

Modules Available

= Exception::Class

= full-powered
= complex
= may be a performance overhead

Modules Available

= Others include: Exception

= Good discussion of pros/cons in
Class::Throwable perldoc

= DIE blocks can reset $@

= sub check {
croak “invalid parameter” unless $_[0];

!
sub DESTROY {

local $@; # forget me and you've had it

eval { somefoo() };
print "in DESTROY\n”;

}

eval { check(undef) };
print "$@\n”;
>>> (empty)

= CPAN solution: Devel::EvalError

Perl Best Practices

= "Perl Best Practices” pp.273-296 first ed. 2005,
D.Conway pub. O'Reilly

= Ten essential development practices
#8 Throw exceptions instead of returning special
values or setting flags

= See also Summary of Chapter 13, Error
Handling (too many points to list here!)

= -end-

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

